Friendly reminder that CRT TVs were basically a particule accelerator you had in your living room. They used power supple capable of delivering tens if not hundreds of thousands of volts, to accelerate the electron that were quite literally being boiled of a glowing piece of metal.
They sometime used a lead infused glass as the front plate to limite if not eliminate the small amount of X-ray they emitted towards you.
They had to be heavy because of the thickness of the glass needed to resist the distance of pressure between the atmosphere and extremely low vacuum inside the vacuum tube. It's that difference of pressure that would result in them exploding in a shower of glass shrapnell if the tube was broken.
I was able to see and take pictures of the comet C2023/A3 (Tsuchinshan-ATLAS) ! This comet will be visible in the night sky probably for the next week or two, it's currently visible both with a pair of binoculars and with the naked eye. Since it's visible very early after sunset, it's a bit difficult to spot for now, but in the coming days it's will gradually be visible later in the night and thus easier to observe.
This comet is one of the brightest in the last few years so it should be quite easy to observe.
I hope you all get a chance to see it, it's magnificent
As Google has worked to overtake the internet, its search algorithm has not just gotten worse. It has been designed to prioritize advertisers and popular pages often times excluding pages and content that better matches your search terms
As a writer in need of information for my stories, I find this unacceptable. As a proponent of availability of information so the populace can actually educate itself, it is unforgivable.
Below is a concise list of useful research sites compiled by Edward Clark over on Facebook. I was familiar with some, but not all of these.
⁂
Google is so powerful that it “hides” other search systems from us. We just don’t know the existence of most of them. Meanwhile, there are still a huge number of excellent searchers in the world who specialize in books, science, other smart information. Keep a list of sites you never heard of.
www.refseek.com - Academic Resource Search. More than a billion sources: encyclopedia, monographies, magazines.
www.worldcat.org - a search for the contents of 20 thousand worldwide libraries. Find out where lies the nearest rare book you need.
https://link.springer.com - access to more than 10 million scientific documents: books, articles, research protocols.
www.bioline.org.br is a library of scientific bioscience journals published in developing countries.
http://repec.org - volunteers from 102 countries have collected almost 4 million publications on economics and related science.
www.science.gov is an American state search engine on 2200+ scientific sites. More than 200 million articles are indexed.
www.pdfdrive.com is the largest website for free download of books in PDF format. Claiming over 225 million names.
www.base-search.net is one of the most powerful researches on academic studies texts. More than 100 million scientific documents, 70% of them are free
This is the (Great) Orion nebula, also known as M42, it's a giant cloud of interstellar dust and gas. In it many new stars are currently forming, some of them also having planets forming around them.
It is one of the most visible nebula in the northern hemisphere, you just need a pair of binoculars to start observing it. I find such nebulae mesmerising, and wanted to share this image I took.
There might not be sound in space, but there is quite a lot to listen to in the radio frequencies (especially when it comes to the planets of the solar system).
(the full article : https://www.jpl.nasa.gov/news/nasas-juno-spacecraft-enters-jupiters-magnetic-field ) Some ''similar'' sounds are also present on earth with for example the reverberation if radio waves emitted by lightning.
I'm trying to find a clean, concise, factual video of pulsar pulses but the top results on youtube are all fake clickbait bullshit. Where are the videos from professor so-and-so with 10 subscribers of simple black and white graphs.
(this page has what I'm looking for but afaik none of these videos are on youtube)
sometimes astronomy camera companies will post about their horrible attempts to fix hardware problems with software. normally these are unremarkable.
and then sometimes they contain a beautiful single sentence that will live in your brain forever
This is the heart nebula (or at least as much of it as I can take with my setup without doing a mosaic) also known as IC 1805 or NGC 896. It is around 7 000 light years from us, in the constellation Cassiopeia. Despite its distance to us it still appears about twice as big as the moon in the sky, which speaks volumes when it comes to its actual size (about 200 light years in diameter).
This being an emission nebula its light mostly comes from gasses ionised by nearby stars.
This nebula also has an open cluster at it's center (a bit closer to us than the rest of the nebula), Melotte 15:
This cluster is bout 1,5 million years old which is very young for such a stellar object. It is composed a a few very heavy and bright stars and many fainter lighter stars.
The starless version :
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera and Baader 6.5nm narrowband filter. 25x300s for the Ha filter, 26x300s for the SII filter and 26x300s for the OIII filter, total imaging time 6h 25min, stacking and processing done in PixInsight. Photo taken mid-January) Other versions with a different colour combinations (a bit less pleased of how they turned out).
If you want to see the nebula in its entirety, you can check out this NASA Astronomy picture of the day made by Adam Jensen.
Photo of NGC 7000 / the North American nebula (southern part), the bright star on the top left corner is ξ Cygni. Might rework it later since this one still has a bit too much gradient/haze due to the full moon when I took the photos. In most cases, emission nebula are the result of gas clouds being ionised by the high energy UV radiation coming from very Hot (and often massive) stars/star cluster. In the case of NGC 7000 the star(s) responsible for most of the ionisation was an unknown for quite a long time, it is only in 2004 that the star responsible for the ionisation was located. This star (actually a binary system according to later publication) known as J205551.3+435225 is located behind the dark region of the nebula (bottom right corner of the photo) which explains why it was only recently identified.
(My best guess of the position of J205551.3+435225 in my picture according to what I can find in the original publication and in the SIMBAD database)
One last thing, that star was later nicknamed Bajamar Star, which comes from the original Spanish name for the Bahamas island.
I think one big reason why we don't consider the stars as important as before (not even pop-astrology anymore cares about the stars or the sky on itself, just the signs deprived of context) is because of light pollution.
For most of human history the sky looked between 1-3, 4 at most. And then all of a sudden with electrification it was gone (I'm lucky if I get 6 in my small city). The first time I saw the Milky Way fully as a kid was a spiritual experience, I was almost scared on how BRIGHT it was, it felt like someone was looking back at me. You don't get that at all with modern light pollution.
When most people talk about stargazing nowadays they think about watching about a couple of bright dots. The stars are really, really not like that. The unpolluted night sky is a festival of fireworks. There is nothing like it.
Photos of the two major components of the veil nebula, the first one is the eastern veil aka C33 and the second one (the one with the star in the middle) the western veil aka C34. Those are part of a supernova remnant (left over gas and dust from a supernova), their colour are due mainly to two gases present inside. The blue/green colour comes mostly from oxygen (as OIII emission around 500nm by doubly ionised oxygen) and a little bit from hydrogen (as H beta emission at 486nm) where as the red comes nearly completely from hydrogen (as H alpha emission at 656nm).
The first photo is about 2.5 hours of exposure (30x3 min for RGB + 10x5 min for H alpha) and the second one about 3 hours (36x3 min for RGB + 16x5 min for H alpha).
The additional photos taken in hydrogen alpha are added to the normal RGB photos to intensify the colour and visibility of the hydrogen gas (it doesn't show well enough with standard RGB in part due to the lower amount of light it emits an in part due to the sensor's response itself) Here is a version of C33 (eastern veil) with the stars removed as my friends were very impressed by it, hope you like it too.
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts